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PREFACE

The work described in this report was performed by the Applied
Mechanics Division of the Jet Propulsion Laboratory.

English units were used for the principal mea-burements and calculation;
in 0 1.: report.
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ABSTRACT

Modal synthesis mediuds have been developed for use by engineers for
cost-effective solutiuns of large stru-_tural dynamics prublems. Different
methods have been proposed by various investigaturs based upon cumparative
solutions of relatively simple structures using different forms of displacement
functions. The paper describes the experiences in the application of modal
synthesis methods to a large complex structure in a project environment. The
considerations include analysis, hardware interfaces, organizational interfaces,

schedules, p ests, resources, and other project requirements. Guod technical
results Here obtained through the use of an integrated analysis/test modal
synthesis on bulk y substructures and systems. These experiences should be
beneficial for engineers contemplating the use of modal synthesis concepts for
future projects.
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Introduction

Modal synthesis concepts have been attractive to many engineers involved

with the solution of eigenvalues and eigenvectors for large,complex dynamic

problems. It is a method that retains the few significant independent coordinates

of the various substructures which are combined into the system dynamic

equations.

The reduced independent coordinates are sel • Aed to provide accuracy in

the lower eigenvalues which are of significance to the structural dynamicists.

The initial developments were motivated by a requirement for lower eigenvalues

of large structures for reasonable computer costs.

Th y• first publiraticii popularizing modal synthesis was a report by

W. Hurty ( 1; , 1 Since then, several other Jocuments on its different aspects,

such as or,!imum belection of displacement functions, have been published 12,

3, 4, 5, and 61. Other studies [7 and N,) have been made on Shuttle type structures

to establish the "best" displacement functions that converge to the correct

solution with the least number of independent coordinates. A cur ,-ent research

program at Langley Research Center includes a task on a 1/8-scale Shuttle

model to verify modal synthesis concepts as applied to the Shuttle.

1 Numbers in brackets designate references at end of paper.

.JPL Technical Memorandum 33-729



Although versatile computer codes have been available for eigenvalue

solutions of a structure, and a few modal synthesis computer programs 191 have

been developed, very few projects have successfully implemented a complete

modal synthesis substructure and system analysis and test program.

This paper presents the experience at the Jet Propulsion Laboratory (JPL)

in a complete modal synthesis analysis and test program. The "best" method

for the project was not determined by analytical studies (2 and 31 but by project

requirements. The results of the effort are based upon its application to six

space projects 110 and 11 I at JP?., including the most recent one, Viking Z.

The Viking results will be used to illustrate the salient points because it incor-

porated all of the experiences at JPL. The inforrviation should be of interest for

engineers contemplating the use of modal synthesis concepts for future projects.

The proper use of modal synthesis will result in an efficient and cost-

effective support to many projects.

Project Requirements

The "best" modal synthesis method and/or a modal synthesis computer

program cannot be specified because of their dependence on the particular

structure and the project requirements. The Project requirements for Viking

1121 should be similar to those for future projects.

Since labor is often the largest cost element, most projects m inimize the

time for the design, fabrication, and test phases, as shown in Fig. 1. For a

2JPL is responsible for the Viking Orbiter S,.stem, which is part of the overall
Viking Project managed by the Viking Project Office at Langley Research
Center (LRC) for NASA.

L	 JPL Technical Memorandum 33-729



series of projects with mine r modifications to the basic structure, higher con-

fidence in the design and minimization of the test program can be achieved by

initially developing a good n ithematical structures and dynamics model that is

verified by a test program. The analysis based on the initially developed

mathematical model can be used in subsequent projectr, for reliable data and

elimination of tests.

Schedule —Observations

The Viking Orbiter (VO) schedule pertinent to this discussion is shown in

Fig. 7..

The current t.-end is to establish initial design loads using load analyses

which are transient analyses based on spacecraft and launch vehicle mathe-

matical models and launch vehicle engine forcing; function. The final model,

verified by a system modal test, is used in a load analysis to establish tLe final

flight loads. The results are used to establish the adequacy of the structure

and/or the ultimate static qualification test loads. Emphasis is placed on the

calculation of spacecraft rnernber dynamic loads rather than accelerations.

The time available between the system modal test and the test-correlated

mathematical model is usually a minimum. Thus, if the test and analysis do

not corzc - -tte, modification of the large system mathematical model to match

the test results is an almost insurmountable task. Criteria for the correlation

of analysis and test [ 131 are lacking, and a proven algorithm 'o automatically

modify the mathematical mudel to match the test data is not i vailable. Conse-

quently,the results from the system modal test are often not used effectively.

JFL Technical Memora-idum 33-729 3
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The effective use of resources is made possible by

j. Verifying the mathematical modals of the substructures with

substructure tests. (The term substructure is deliberately

used instead of subsystem. )

2. Increasing the probability of a good system test by recognition

of potential problems that may be caused by selected substruc-

tures. The potential problems include nonlinearities, instru-

mentation requirements, mass matrix estimations, and Went ;

-fication of significant dynamic ch^!.racteristic:s.

3. Distributing the instrumentation and engineer workload over a

longer time period.

4. Performing a good substructure analysis and test program to

eliminate the requirements for system tests.

Dynamic Model Requirements

The dynamic model requirements for different projects will vary along

with the appropriate rr.odal synthesis approach. The different project use

a dynamic model tr.- to evaluate the

1.	 Attitude control interaction

1	 2. Spacecraft / launch vehicle interface loads or accelerations

3. Spacecraft accelerations

4. Spacecraft member forces

JPL Technical Memo randu
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Another consideration is whether the significant dynamic forcing ftnction is

superimposed with a quasi-static acceleration.

System Modal Test

The need for an accurate analytical model prior to and a fter a system

modal test is dependent on the project requirements. Other than to obtain good

early load estimates and to help guide the system modal test itself, an analytical

model that correlates with test results would be superfluous if the system test

results could be used d'.rectly. This is rarely the case, since it is difficult to

determine force co.-fficients experimentally and experimentally determined

models often result ir. n unerical difficulties. For attitude control interaction

studies, or for the evaluation of spacecraft/launch vehicle interface loads or

accelerations, modal test data are probably sufficient.

However, frequently a modal-teat-correlated analytical model is desirable

for the following reasons:

I.	 The modal test configuration may not duplicate the final flight

configuration because

a. Referee propellants are used for safety considerations.

The density of the referee propellants differs from that

o, the flight propellants.

b. The test configuration may exclude a few select sub-

structures. Substructures (e.g. , nonlinear ones) may

be excluded to assure a good modal test to provide

J?L Technical Memorandum 33-729	 5
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physical space to attach the shakers, or to minimize

the number of system eigenvalues to these that require

verification.

C. The test configuration is modified to allow a meaningful

modal test. For instance. discrete dampers may hE

inactivated or sliding joints may be prevented from

sliding.

d. Design changes have been made since the fabrication of

the hardware for the test.

2. More detailed information is available from the mathematical

model than from the test measurements. For instance,

detailed modal force dist • ibution can be obtained from the

mathematical model, whereas its measurement during the

test is impractical.

3. A variety of configurations must be evaluated for its dynamic

characteristics. For instance, attitude control studies with

various positions of appendages, launch analyses, and

ground condition tests are typical of configurationm required

for one project.

4. The mathematical model is valuable for follow-on projects

to provide fundamental information which may allow elimin-

ation of some analyses and tests.

JPL Technical Memorandum 33-729
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Two difficulties that currently exist are a lack of

1. A criterion for the degree of correlation 113 and 141 required

by an engineer.

2. A proven algorithm to upgrade a mathematical model 115 and

161 to correlate with test data.

Although several methods are available to reconstruct the stiffness and mass

matrix from the test data 117, lh,and 191 , they appear to lose their physical

significance; thus, their use for analyzing other configurations is limited.

Viking Requirements

:he Viking, requirements 1121 are described to provide a background for

the modal synthesis approach. In general, the requirements were more exten-

sive than those of previous JPL projects.

Dynamics Data

Since the design and qualification test loads were established by load analy-

sis, the detailed leads in the various structural members resulting from com-

bined quasi-static and staging transients were required. load analysis consists

of developing a complex finite element model (approximately 32, 000 degrees-of-

freedom) of the VO (Figs. 3 and 4), which is reduced to about 250 dynamic

degrees -of -freedom by moral synthesis. The model is coupled by modal syn-

thesis methods to the Viking Lander capsule ami the Titan III£/Centaur D-IT

launch vehicle (Fig. 5) and excited by the forcing functions shov-in in Fig. 6.

Loads resenting from eigenvalues less than 40 Hz were of interest. (The first Viking

spacecraft eigenvalue is 4.42 Hz and the 40th eigenvalue is 43.53 Hz. )

JPL Technical Memorandum 33-729 	 7
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Schedule

As shown in Fig. I, the moc.al-test-correlated mathematicaI snodel wzs

required within a few weeks after the completion of tht VO modal test 1201 .

The model was required for load analysis to establish the ultimate qualification

static test loads prior to the scheduled test date	 Fortunately, good substruc-

ture modal tests and the analyses program dirtctly contributed to a successful

system test and co: relation of the analytical niodel. The schedule would not

D ive permitted an update of the mathematical model.

A high probability for a good mathematical model, modal test, correla-

tion, and successful ultimate static test was required because a redesign and

requalification of the structure prior to launch in the third quarter u" 1975

would have been costly.

Dynamic Model Requirements

A mathematical model of the VO war, required. 'The modal-test-verified

n ►ath ;-a`ical model was used to establish ten different models representing

variety of tas: and flight conditions and approximately six models for attitude

control studies in the VO cruise configuration (Fig. 4). All VO models w,-re

L,-!nerated using the JPL Structural Analysis and Matrix Interpretive System

"S) computer program. The computer used was the Univac 1108,

8	 JPL Technical Memorandum 33-729



Modal Synthesis

Definition of Problem

L. ` 11

	

	 The major step required to obtain a solution to the system equations of

motion

(M	 U) + ICI{U) + IK) {U) - (F(t))

	

(f} _ ( s ; {U)
	 (1)

where

(M) = mass matrix of the system

(U)	 = independent coordinates of the system

(C) = damping matrix of the system

(K	 = stiffness matrix of the system

{ F(t)) = forcing; function

(f)	 = member :orces

S]	 = force transformation

is to reduce the degrees-of-freedom of Eq. (1) by representing; (U) in terms of

various displacement functions. The relationship is

{U) = «} (Q)	 (2)

whe j

l	
JPL Tec.
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I	 Substitution of Eq. (2) into (1) and premultiplication by 14I T results in

Ie0; T lMI l^l (Q)	 I T ICI 	 (Q) + Imi T IKI I4 I IQ) = 1 ,6 IT IF(t))	 (3)

^C

or

IK41 (Q) + ICI IQ) + IKI (Q) _	 I. 	 (t)1	 (4)

The eigenvalue solution of (4) for I C I = 0 and If (t) } = 0 results in the

system eigenvalues and eigenvectors that are verified by the system modal test.

The niain advantage of modal synthesis or the proper establishment of

relationship (2) is that the order of the equations of motion is reduced from

32, 000 for (1) to 250 for (3), with little )ss in accuracy of the desired informatio•..

Displacement Functions

The various displacement functions for a substructure can be obtained

from the following two equations for any sut-structure:

k II k IO 1 ^ u I	 r f1
(5)

k0IkOO lu 0	 fO

or

Euo]= [koo]-1([fo] - [ ko1l[uI])	 (6)

i

,o	 JPL Technical Memorandum 33-729



and

(r„I(;!) + [k1 {u) _ (0)	 (7)

where

(u)	 substructure displacements

[k)
	 substructure stiffness matrix

(f)
	

forces on the substructure

(m	 substruc.... - .r.ass

I	 subscript to denote interface degrees -of -freedom

O	 subscript to denote degrees-of-freedom other than the interface.

The various displacement functions are discussed below.

1. Rigid ?ody Displacement Function (9] . Rigid body functions represent

the ;Notion [OR ] when a degree-of-freedom [ u I I is displaced by an arbitrary

value without force. The [ ^ R ) is a solution to Eq. (')), where ( f  1 = 0 and

( uI I is a u,-dt matrix (or linear combination of unit matrices) in the degrees-

of-freedom asszciated with the rigid body displacements.

IU  1 = P RI ^qR 1
	 (g)

The number of rigid body motions may range from 1 to w. Rigid body r lotions

in excess of 6 are related to linkages within the substructure.

2. Constraint Displacement Functions [ 1 ( . Constraint functions represent

displacements C(cj of the substructure when a unit displacei,,ent of an interface

degree-of-freedom requires force as the other interface degrees-of-freedom

are restr-fined. If the interface degrees-of-freedom are statically determinate,

the constraint functions are equal to the rigid body functions. The constraint

JPL Technical Memorandum 33-729 	 11



(9)

functions are solutions to Eq. ( 6), where I f0 J	 0 andI uI I is a matrix of

displacement vectors with unity associated with the degrees -of -freedom defining

a constraint mode. (Other terms of the vector are zero. )

f.

3. Attachment Dis placement Functions ( 9, 5, and 6 1 . Attachment functions

are displacements [0AJ of the substructure resulting from concentrated loads

•	 (fad on the substructure. Disp .acenients ( 4)A ] result from the solution to (6),

where [f 0 1= IfAJ and Cu I J = u.

IU A ^ - I(Wjg A
(1
	(10)

Th- I f,j can be quasi-static inertia lc3ding of the substructu: a or various

combinations of concentrated loads.

4. Imposed Displacement Functions, imposed functions represent motions

JO
IM J that engineers consider relevant to describe a structural deformation.

The displacements are not necessarily a result of any realistic external loads,

but ar-- usually directly related to such loads.

I Uimy - [4.IMJIgImy
	

(11)

5. Eigenvector Displacement Functions. The eigenvector functions are the

eigenvector solution of Eq. (7).

I U E} _ [ .0E l{qE ^	 (12)

	12	 JPL Technical Memorandum 33-729
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Total Displacement Function

The displacements of any substructure are represented by any combina-

tion of the displacement functions

P

q 

qC

(u)	 ^ l'	 C 114Al 14)IJ I (P E 	q 	 (13)

qTM

IqE

or

Iu)i = 1-0 i 1 fqi)
	

(14)

for the ith substructure.

Equation of Motion of Total System

The independent generalized coordinates of the system are selected by

the engineer, who combines the generalized coordinates of the substructures

through compatibility relations representing the interconnections. Figure 7

shows that the substructures are attached to the bus for Viking. The selected

displacement functions of the substructures (Eq. 13) are combined to obtain

the system equations (4).

JPL Technical Memorandum 33-729	 13
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Modal Synthesis --VO Project Requirements

Project Requirements

The experience gained with the mortal synthesis process fur VO should be

n ,

	

	
applicable to most projects. At the initiation of the Viking Project, the modal

synthesis plan was closely integrated with other Project constraints and require-

mentb that included

1. Organizational interfaces external to JPL (Figs. 3 and ^)

2. Organizational interfaces internal to JPL

3, Substructure design, fabrication, and delivery schedules

4. System-related hardware and test program

5. Load analysis definition and requirements

A modal svnthesis plan based solely upon the "best" technical approach could

not be practically implemented and would not have been acceptable. Two

decisions, partially involving analysis and test considerations, were:

1. the responsibility for the Viking Lander capsule. adapter

(Fig. 3) was assigned to JPL. JPL was cognizant of the

hardware which was important in the modal synthesis and the

system test plans.

2. The Viking transition adapter (VTA) and Centaur truss adapter

(CTA) that interconnect the Viking Orbiter System and Centc sr

were included in the JPL VO mathematical model, modal, and

static qualification test program. 	 The VTA and CTA were

designed and fabricz.ted by General Dynamics/Convai,-

Astronautic (GD/CA).

14
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A goal was to minimize the analysis, design, and test 4nterfaces between

organizations and people to decrease the coordination effort. Modal synthesis

methods minimized interactions and provided a means to effectively obtain

good technical results. The coinplexities associated with the inclusion of the

VTA/CTA int he VO effort for technical considerations clearly demonstrated

the advantages k minimizing the interfaces whenever possible.

A more detailed schedule is presented in Fig. 8, and the interfaces of

the substructures and system a--v shown in Fig. 9.

All the structural development and structural q,talification testing was

performed by the JPL Structures and Dynamics Section.

Selection of Substructures

The substructures were defined by the interfaces shown in Fig. 9 rather

than an analytical consideration. As noted in the schedule (Fig. 8) and the

interfaces (Fig. 9), the substructures were under the cognizance of different

engineers and organizations. They were delivered and tested at different

times. To provide effective support, analysis, design, and test efforts were

performed for each substructure with a minimum of interaction. This naturally

resulted in the substructure/modal synthesis approach.

Advantages of Substructure Approach

The goal was to effectively support the VO and develop a mathematical

model that would be verifi,:d by the system modal and static tests. The plan

was to develop the system mathematical model (used for both static and dynamic

models) by testing the substructures at the earliest possible time and incorpo-

rating the results into the system model.

JPL Technical Memorandum 33-729
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The advantages of modal synthesis to VO were:

1. A structures engineer provided static and dynamic analysis and

test support to his assigned substructure with a minimum of

interaction wi`_h other substructures.

Z. Each engineer and/or organization developed the mathematical

model independently of the others. The number of degrees-of-

freedom, numbering of nodes, and computer program were

selected by each engineer. Thus, a special dynamic model

with "reduced" degrees -of -freedom was not required. The

model was used to evaluate substructure responses, interface

distortion, and other parameters.

3. A better engineering estimate of substructures prior to the test

was possible when experience on similar hardware was avail-

able. Estimates of damping on substructures made of honey-

comb or composites are typical examples.

4. An engineer developed a substructure mathematical modal,

which was correlated and corrected to match the test data.

Corrections were made to relatively small mathematical

models prior to their incorporation into the system model.

5. Ninety percent of the strain gages required for the system

model and static tests were installed for the substructure tests.

This distributed the instrumentation workload and simplified

the work by allowing hardware to be instrumented in the

instrumentation laboratory. Additionally, the instruments

i
16	 JPL Technical Memorandum 33-71.9



and their calibration were validated during; the substructure

tasty.

6. The substructure tests revealed design deficiencies early in thv

VO schedule.

7. The potential probIcnis caused by the various substri-ctures

during the system modal tests were recognized. For instance.

structural nonlinearity would invalidate the system modal test

based upon linear theory. The troublesome substructures were

modified or eliminated from the system test.

8. The system modal (201, vibration 121 and 221, and qualification

static 1231 test results were excellent. Good test results were

clue to instrumentation and mathematical model verification

during the substructure: tests.

9. System parameters, such as the pressure in the propellant

tank, were established based upon the influence of the pressures

on the tank stiass and structural nonlinearity.

10. A variety of different system configurations were effectively

analyzed by changing only the affected substructures. The

configurations analyzed included:

a. Two different launch configurations with different

propellant loadings.

b. Different launch configurations to establish the

maximum or rninunum propellant loading which would

affect the structural design.

JPL Techr.ical Memorandum 33-729 	 17
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c. Modal test configuration without selects substructures

and referee propellants in the propellant	 lks.

d. Forced vibration test configurations.
i

C. Attitude control cruise configurations.

Description of VO Substructures and Their Displacement Functions

General. All the dynamic and static tests to be described wcre performed

at different magnitudes of loading to establish the nonlinearitics and high-level

damping trends. Since loads were required when memberr; were subjected to

combined quasi-static and dynamic loading, modal acceleration methods

(rather than modal displacement) were used. In addition, the selec.-d displace-

ment functions should result in a small residual mass (24j across an interface

for which quasi-static loads were important. (This can be achieved by

selection of quasi-static attachment functions. ) Strain gage readings were

measured during the substructure tests to partially verify the eigenvalue furce

coefficients.

Individual Members and Jo ints. Whenever feasible, individual truss type

members, and occasionally the joints with their instrumentation, were tested

'.n a uniaxial testing machine. 'he primary objective was to detect a boor

design or deficient hardware early in the Project schedule. Additionally, the

stiffness of the substructure was verified and the instrumentation was cali-

brated. A test of the Viking spacecraft adapter truss/fitting revealed it joint

that "gapped" when a tension load was applied.

lK	 JPL Technical Memorandum 33-729
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Solar Panels. Eigenvector and constraint functions were used for the

solar panel. The solar panel with the relay antenna was verified with a model

and statie test in the launch configuration • and a modal test in the cruise or

extended configuration. After correlating the mathematical model with the test

results, the antenna was removed from the mathematical model to obtain the

solar panel model without the relay antenna.

In addition to the solar panel tests, dynamic and static tests were

performed on the aluminwii honeycoaib substrate to verify its structural

integrity and the structural properties for the mathematical model.

The analysisanalysis indicated n ► ure eigenvalues in the frequency range of

interest than the test results. Only the a :alytical eigenvalues correspunding

to test eigenvalues were retained, and the eigenvalues were modified to match

the test results. The anaLytical eigenvectors were retained.

The solar panels are connected to the Viking spacecraft adapter with

"viscous dampers" that critically damp the panel lowest normal mode. Since the

system eigenvrlues were limited to real eigenva ►_ues, the dampers were not

included. The influence of damping from the viscous dampers was treated as

solar panel eigenvalue damping.

Effective Mass Deteri-ninatiun of the Pr? ellant. A forced vibration test	 I

was performed on a single propellant tank with the propellant management

device to measure the effective mass of the propellant in the lateral, longitudinal,

and pitch directions for various ullages. The data were used for both the modal

test and analysis.
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Propellant Tank Tab. The reduced stiffness matrices of the propellant

tabs as attached to the, members supporting the tanks were calculated and

'	 verified by applying static loads similar to attachment functions to confirm

the mathematical model. Imposed displacements similar to constraint functions

were then applied to the mathematical model to verify the reduce) stiffness

matrices.

Proyulsion Substructure. Eigenvalue and constraint functions were used

to describe the motion of the propulsion substructure. Modal and static tests

were performed to verify the functions. Tests were made at various internal

pressure levels and ullages to establish the threshold of nonlinearity caused

by propellants and structural nonlinearities. Zvro ullage tests were run in

the event that ullages resulted in nonlinearities which would compromise the

system modal test. Although a zero ullage condition test was included in the

system modal test plan, it was canceled because she ullage conditions did not

introduce significant nonlinearities.

Components mounted on isolation pads to the propulsion substructure

resulted in local eigenvectors that did not affect the overall significant

eigenvectors.

High-Gain Antenna. Eigenvalue and constraint functions were used to

describe the motion of the high-gain antenna. Modal and force vibration sine

tests were performed to verify the analytical model. The design, including

I	 "snubbers, " resulted in a nonlinear (frequency vs force) structure.

i	 Additional modal tests were run for the antenna deployed positions.
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Science Platform. Eigenvalue and constraint functions were used to

describe the platform motion. Modal tests in the stowed and deployed conditions

were performed to verify the model. The design included serrated joints to

allow slippage at high load9. However, since the magnitude of the forces in the

modal test did nut allow slippage, the modal analyses excluded joint slippage, but

the moriel for load analyses did include joint slippage.

During the test, the fixture was not sutficientl!- rigid, and it rotated.

Because o: schedule and cost considerations, the teat was not repeated. Tile

influence of base rotation could not be eliminated from the test results; thus no

experimental results were available for correlation with analyses. An uncorre-

lated analytical niodel was used for the system modal test. The science-

platform-related eigenvalues and eigenvectors revealed the worst correlation

in the system modal test. This deficiency was, however, understood and

allowances were made in the loads calculation to cover these uncertainties.

Cable Trough. Prior to the buildup of thu structure fur tale system modal

test, a quick modal test of the cable trough was performed to identify the eigen-

vectors and es' ablish the adequacy of the experimental mass distribution.

Electronic Chassis. Imposed functions were selected for the electronic

chassis to establish ita generalized stiffness and mass matrix based upon its

distortion when it was integrated with the bus. Tests were not run because of

the difficulty in imposing the buundary conditions.

Bits. The bus structure included the rigid mass simulation of the Viking

Lander capsule (VLC), Viking; Lander capsule adapter (VLCA), Viking spacecraft

adapter (V-S/C-A),and the VTA/CTA. The rigid mass of the VLC was .ncluded

to allow the substructure function to be more representa ,% of its motion in the

JPL Technical Memorandum 33-729 	 2l
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system response in order to simplify and minimize the selection of bus functions.

The i:zciusion Gi the rigid mass is ids-ntical to mass loading the interface [2]. As

mentioned before, the CD/CA hardware, referred to as the VTA/CTA between the

Centaur and Viking spacecraft,was im iuded for analysis purposes. The VTA/CTA

at the Viking intcrf.ice wits a flexible structure, whereas at the Centaur interface

it was considered a rigid plane. The attachment or constraint functions to attach

the Viking to the Centaur were eliminated by the inclusion of the CTA/V1A in the

bus model.

Three types of functions as independent coordinates were tried for the bus:

1. Attachment functions related to the forces from the

substructures.

2	 Eigenvector functions with the interfaces to the substructures

mass loaded and stiffness leaded (if statically indeterminate).

They were linearly combined to obtain super-elements (1 1 I

compatible with the substructure degrees -of -freedoni.

3. Degrees-of-freedom associated with the bus mass points.

The bus functions we- verified by a static test. The static displacements

and internal member forces were used to verify the mathematical model.

System Modei

The effort to generate a mathematical system model using attachment and

eigenvector functions resulted in failure. The resulting mass matrix of Eq. (1)

could not be decom posed for the eigenvalue solution. This may be attributed to

single -precisien arithmetic. It is a U-iitation of SAMIS using the Univac 1108

computer.

Z?	 JPL Technical Memorandum 33-729
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The use of the bus's original degrees -of-freedom : nd the substructure

functions (mixed coordinate system (141) was successiul. The model was verified

by a system modal test and a system static test. Eigenvalues, eigenvectors,

static displacements, and eigenvalue force coefficients were verified. The

•	 system test did not include all the substructure's but only those necessary to

verify the model and structure.

The eigenvalue damping was estimated by calculating the kinetic energy

participation of various substructures in each eigenvalue and proportioning the

substructure damping in relation to their contributions.

Conclusion

Modal synthesis concepts are valuable in the solution of large dynamic

problems as well as effective in the support of a project. However the approach

or selection of the methodology mutt not be based solely on "theory" but must be

closely integrated with the overall project plan. Fortunately, the project

objectives and modal synthesis desires are often similar (e.g. , simplify

interfaces). The selected methodology should also consider the ability to

verify the mathematical model by an experimental program. A difficulty in

modal synthesis is that the dynamicist must have a good understanding of

structural dynamics to combine the substructures; automated computer programs

to select the "best" methods are not available and may nut be feasible for a

genes-'. type of structure.

The use of modal synthesis resulted in an excellent mathematical model

and meaningful test results, as well as a good correlation of analysis and test,

for the VO. its advantages for mu'.*iple mission projects are even greater
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because of the potential savings by elimination of analysis and tests. Using the

verified mathematical model, only those oubstructure• s to be changed for a

mission will require analysis for incor poration into the• system model. Modal

synthesis provides a means by which past experiences of a , project can be fully

utilized.
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